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We consider lubrication theory for a two-dimensional viscoplastic fluid confined between rigid moving
boundaries. A general formulation is presented which allows the flow field and pressure to be calculated
given an arbitrary rheological model; the Herschel–Bulkley law is used for illustration. The theory is first
applied to a (full) viscoplastic journal bearing with arbitrary motions allowed for the inner cylinder
(either prescribed, or arising from an imposed load and torque). Conditions are derived determining
when motion is arrested by the yield stress. We next apply the theory to a slider bearing filled with Bing-
ham fluid, computing the lift force on the bearing and the fluid flux through it. The results are then
extended to model an inclined plate that is towed at constant horizontal speed over a shallow viscoplastic
layer but is able to move vertically. Steady planing solutions are stable at low towing speeds, but give way
to unstable vertical oscillations of the plate at higher speed; the yield stress has a relatively weak effect
on this instability. The pattern imprinted on the fluid layer by the oscillations provides an analogue of the
washboard phenomenon on gravel roads.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

A wide variety of lubrication problems involve the flow of non-
Newtonian fluid between moving surfaces [1,2]. Our focus in the
present article is lubrication by viscoplastic fluids, and, in particu-
lar, on the role of a yield stress. Although viscoplastic fluids are
commonly used as lubricants (grease, for example, has previously
been described as a Bingham fluid, e.g. [3,1]), the impact of a yield
stress on the flow dynamics has not previously been fully explored.
One explanation for this omission may be the complicated consti-
tution of real lubricants, which defies an accurate description by
idealized models such as the Bingham or Herschel–Bulkley laws.
The operating conditions of many bearings also precludes yield
stresses from playing an important dynamical role in practical sit-
uations [4]. On the other hand, yield stresses have recently been
suggested as the key to stabilize lubricating multi-layer flows [5].
Moreover, in biological contexts, yield stresses may play an
important role in peristaltic pumping [6,7] and animal locomotion
problems, such as the swimming of a sperm [8], and the crawling
of a snail [9,10].

The key difficulty in viscoplastic lubrication is that the yield
stress can arrest flow over localized regions within the fluid.
Importantly, the locations of these rigid plugs (or ‘cores’, as they
are sometimes referred to) and how the flow pattern is organized
ll rights reserved.
around them may not be known at the outset. Instead, the yield
surfaces are part of the solution of the problem in the fashion of
a type of free-boundary problem. Complicating the problem fur-
ther is that, in slender geometries, even if the fluid is yielded, the
yield stress may still dominate the viscous stresses to create
plug-like regions or ‘‘pseudo-plugs’’ [11,12].

In some situations, geometrical considerations can allow one to
anticipate the pattern of plugs and pseudo-plugs and thereby more
easily determine the flow field. Such considerations are exploited
by existing solutions for viscoplastic slider and journal bearings
[3,1,13,4], and underly the flow patterns for free-surface flows
[14,12]. Nevertheless, in general settings, the flow pattern must
be determined along with the solution, one implication of which
is that in dynamical problems the plugs or pseudo-plugs may ap-
pear or disappear as the flow evolves. Such complications plague
the swimming problems considered by Balmforth et al. [8] and
Pegler [15], and constitute one of the difficulties that we address
in the present article.

Our goal, then, is a general method for viscoplastic lubrication
problems in which the flow pattern cannot be predicted ahead of
time. In Section 2, we describe a general formulation of this
method, following which, in Sections 3 and 4, we present two
illustrative examples. The first, the viscoplastic journal bearing
(Section 3), extends the work of Milne [3] and others [1,13] by
allowing for general unsteady motion of the bearing surfaces. The
applications of this analysis to real bearings are not so clear, in view
of our restriction to full, non-cavitating, two-dimensional bearings
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filled with a model viscoplastic fluid (a Herschel–Bulkley fluid). Our
purpose, however, is to use this classical type of bearing chiefly as a
model problem to illustrate the difficulties and the features of the
solutions. Accordingly, we focus on the dynamical behaviour of
the bearing, rather than steady solutions of the Sommerfeld type
as presented previously [3,1,13]. Along the way, we elucidate
dynamics relevant to sedimentation problems. In particular, the
thin-gap geometry of the bearing allows us to make considerable
analytical headway into exploring how a cylinder sediments
through a viscoplastic fluid towards a wall, with its progress arrested
by the yield stress. The corresponding problem for a cylinder falling
through an unbounded yield-stress fluid is rather more complicated
owing to the convoluted structure of the yield surfaces and
pseudo-plugs [17,18], and we are aware of no existing results for
sedimentation towards a plane wall (unlike the Newtonian version
which is a classic problem in viscous fluid mechanics [19]).

Our second example, in Section 4, is motivated by experiments
on the phenomenon of washboard roads [20–22]. This phenome-
non is usually thought of as a practical pattern-formation problem
originating from the passage of a vehicle with a suspension over a
sand or gravel surface. However, as alluded to by Mather [20] and
demonstrated experimentally by Hewitt et al. [16] the surface need
not be granular (many fluids can apparently be ‘‘washboarded’’)
and the vehicle can simply be an inclined plate towed at constant
speed. In the version of the problem explored here, the inclined
plate is towed over a thin layer of a viscoplastic fluid; images from
the corresponding experiment are shown in Fig. 1. Within the
framework of lubrication theory, the dynamics can be discussed
relatively concisely and the washboarding instability demon-
strated theoretically. In fact, the idealized geometry we adopt
makes this problem similar to two other standard lubrication prob-
lems: the slider bearing [1] and blade coating [23]. In Section 4, we
therefore also revisit and extend some earlier work on sliders and
blades moving over viscoplastic fluids.

The principal difference in the washboarding problem is that
the inclined plate is free to move vertically according to the im-
posed gravitational load and the opposing fluid lift force, unlike
the standard lubrication problems, where the plate position is held
fixed. Despite this, we begin our study of the washboard instability
Fig. 1. An experiment in which an inclined plate is towed at constant speed over
the surface of a layer of viscoplastic fluid [16]. The plate is pivoted so that it can
move freely up and down under the action of gravity and the lift force from the fluid
(when the plate and fluid are in contact). If the towing speed is sufficiently fast, the
plate oscillates vertically due to an unstable interaction with the deforming fluid
layer, leaving the surface between regularly spaced impacts and sculpting a
washboard pattern in its wake. The top picture shows an image captured from high-
speed video footage; the dashed line indicates the path taken by the far corner of
the trailing edge of the plate. The lower picture shows a photograph taken of a
longer section of the final washboard pattern; a shadow cast over the layer
highlights the relief of the washboard (the peak-to-trough elevation differences are
less than 2 mm). The towing speed was 37 cm/s, fluid depth was 7 mm, and the
plate angle was 15�; the fluid is joint compound (a commercially available kaolin-
based material), mixed with a little water, and possesses a yield stress of about
30 Pa.
by constructing the steady planing states in which the plate is
dragged at fixed height over the layer, and which have a close rela-
tion to the slider bearing and blade coater. With that solution in
hand, we then explore whether the plate is stable towards vertical
oscillations (this unsteady problem has some similarities with the
oscillations of an air slider bearing studied in [24]). We do indeed
find that oscillations can grow unstably, generating periodic undu-
lations of the plate that imprint a washboard pattern in the fluid
layer left behind (cf. Fig. 1). The generality of both the experiments
and theory suggests that this washboarding instability may well
play a role in other problems, such as blade coating with pivoted
or flexible blades [25]. It also turns out that the imprint carved
by the plate features sharp steps that undoubtedly would be
smoothed by gravity or surface tension. Thus, the passage of the
washboarding plate leaves behind an adjusting fluid layer in which
cliffs slump back to equilibrium in a novel variant of the free-sur-
face flow problem [14,12,26].

We conclude our study in Section 5, and the Appendices contain
a number of technical details that underscore many of the results
described in the main text.

2. Mathematical formulation

The lubrication problem centres on the two-dimensional flow of
viscoplastic fluid within a narrow gap, as sketched generically in
Fig. 2a, and for our specific examples in panels (b) and (c). For each
of these problems. the gap is described by a Cartesian coordinate
system which is orientated with x running approximately along
the gap, and y directed across it. The surfaces bordering the gap
are denoted y = Y1(x, t) and y = Y2(x, t), with the thickness,
h(x, t) = Y2 � Y1. Along these surfaces, the velocities are (U1(x, t),
V1(x, t)) and (U2(x, t), V2(x, t)).

2.1. Lubrication analysis

The gap has a characteristic thickness, H, and length, L; fluid
flows through the gap with a characteristic speed of U , and the
cross-slot speeds are order UH=L. For the lubrication analysis, we
demand H� L, and assume that the reduced Reynolds number
ðH=LÞRe� 1, where Re ¼ UH=m and m is a characteristic kinematic
viscosity. These scales can be exploited to express all lengths and
velocities in dimensionless form. We further add the timescale,
L=U , and assume that shear stresses scale with T ¼ qmU=H, and
pressures with LT =H (guaranteeing the lubrication pressures
greatly exceed shear stresses);q is the fluid density. To leading order
in the aspect ratio of the gap, H=L, the momentum and continuity
equations for the fluid can be written in the dimensionless form

px ¼ sy; py ¼ 0; ux þ vy ¼ 0; ð1Þ

where p(x, t) is the fluid pressure, s(x,y, t) is the shear stress, and the
x and y subscripts denote partial derivatives. Gravity is ignored.

The boundary conditions are that

uðx;Y1; tÞ ¼ U1; vðx;Y1; tÞ ¼ V1 � Y1t þ U1Y1x; ð2Þ
uðx;Y2; tÞ ¼ U2; vðx;Y2; tÞ ¼ V2 � Y2t þ U2Y2x: ð3Þ

The momentum equations are integrated to furnish

s ¼ s1 þ ðy� Y1Þpx ¼ s2 � ðY2 � yÞpx; ð4Þ

where s1 and s2 are the surface shear stresses, which satisfy

px ¼
1
h
ðs2 � s1Þ: ð5Þ

For our viscoplastic fluids, when the shear rate, uy, dominates
the other strain rates, the constitutive law, to leading order, can
be written in scalar form and in terms of a prescribed function:



(a)

(c)

(b)

Fig. 2. Three sample geometries: (a) colliding smooth surfaces with an intervening viscoplastic fluid; (b) a viscoplastic journal bearing; and (c) a plate planing over a
viscoplastic layer.
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s = T(uy). Note that, for a yield-stress fluid, the rigid phase (with
uy = 0) corresponds to T(uy) being multi-valued over the range of
stress beneath the yield value. More usefully, we define the
(well-defined) inverse, uy = C(s). A sketch of C(s) for the Her-
schel–Bulkley law is given in Fig. 3. This model, in our dimension-
less notation, takes the form,

uy ¼ CðsÞ ¼ ðjsj � BÞ1=n
þ sgnðsÞ; ð6Þ

where (�)+ indicates max(�, 0), n is a power-law index and the Bing-
ham number B is a dimensionless yield stress, with

B ¼ sY

T
¼ sYH

qmU
; qm � KUn�1

Hn�1 ; ð7Þ

sY is the dimensional yield stress and K is the consistency. In this
one-dimensional form of the model, the fluid is yielded for jsjP B
and rigid otherwise; in the lubrication approximation of a two-
dimensional fluid, however, the yield condition must be interpreted
a little more carefully, as outlined by Balmforth and Craster [12] and
mentioned later.

Exploiting the boundary conditions in (2) and (3), we may write

U � U2 � U1 ¼
Z Y2

Y1

uy dy � 1
px

Z s2

s1

CðsÞ ds; ð8Þ

in view of (4). If we define the new functions,

IjðsÞ ¼
Z

sjCðsÞ ds; ð9Þ

then,

U
h
ðs2 � s1Þ ¼ I0ðs2Þ � I0ðs1Þ: ð10Þ

Also, the y � integral of the continuity relation in (1) implies
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Fig. 3. The functions (a) C(s), (b) I0(s) and (c) I1(s) for the Herschel–Bulkley mo
uy ¼ CðsÞ ¼ ðjsj � BÞ1=n

þ sgnðsÞ, where B = 0.4 is the Bingham number and n = 1/3 the pow
@

@x

Z Y2

Y1

u dyþ ht ¼ 0: ð11Þ

The x-integral thus implies

QðtÞ ¼
Z Y2

Y1

u dyþ
Z x

0
htðx̂; tÞ dx̂

� 1
2

Z Y2

Y1

ðY2 þ Y1 � 2yÞuy dyþ qðx; tÞ; ð12Þ

where Q(t) is a ‘‘constant’’ of integration that has the physical inter-
pretation of a flux through x = 0, and

qðx; tÞ ¼
Z x

0
htðx̂; tÞ dx̂þ 1

2
hðU1 þ U2Þ: ð13Þ

Therefore

Q � q ¼ hUðs2 þ s1Þ
2ðs2 � s1Þ

� h2½I1ðs2Þ � I1ðs1Þ�
ðs2 � s1Þ2

: ð14Þ

Eqs. (10) and (14) constitute a pair of algebraic equations that
must be solved at each position in x, given the gap thickness, h,
surface velocities, (Uj,Vj), and the flux, Q(t). In most situations,
however, the flux is not prescribed, and instead one must impose
pressure conditions at the two ends of the gap. In particular, there
is a prescribed pressure difference across the gap of

PðtÞ ¼
Z

D
px dx; ð15Þ

where D refers to the interval of x spanned by the fluid gap. With
(5), we then arrive at the additional integral constraint,

P ¼
Z

D
ðs2 � s1Þ

dx
h
; ð16Þ

which determines Q. We present a convenient numerical algorithm
to solve (10), (14) and (16) in Appendix A.
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del in lubrication approximation, with s = T(uy) = (B + juyjn)sgn(uy) for uy–0, or
er-law index. The yield points, jsj = B, are indicated by stars.
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2.2. Yield surfaces and plugged regions

Once we solve this integro-algebraic system, we may recon-
struct the flow field. Importantly, for a material with a yield stress,
the fluid is predicted to yield when the magnitude of the shear
stress attains the yield value B. The two conditions, s = ± B, imply
yield surfaces at the levels,

Y� ¼ Y1 �
s1

px
� B
jpxj

: ð17Þ

For y > Y+ and y < Y�, the fluid is fully yielded. Over the interval
Y� < y < Y+, the fluid is dominated by the yield stress. As described
by Balmforth and Craster [12], however, this region is not necessar-
ily rigid, but can be held just above the yield stress, with the exten-
sional stresses becoming of the same order as the shear stress. The
region is then weakly yielded and more precisely referred to as a
‘‘pseudo-plug’’, with its borders signifying ‘‘fake’’ yield surfaces.
The velocity profile across the pseudo-plugs is independent of y to
leading order, but varies with x. Only if that velocity profile turns
out to be independent of x is the region a true plug flow. This can
be ascertained from the plug speed, ub, which follows from the
integrals,

R Y�
Y1

uydy ¼ �I0ðY1Þ=px ¼ up � U1 or
R Y2

Yþ
uydy ¼ I0ðY2Þ=px ¼

U2 � up. That is,

up ¼ U1 �
I0ðs1Þ

px
¼ U2 �

I0ðs2Þ
px

: ð18Þ

If the surface stresses both exceed the yield stress, jsjj > B for
j = 1 and 2, but have opposite sign, then Y1 < Y� < Y+ < Y2 and up dif-
fers from U1 and U2, varying with x; i.e. the layer contains a pseudo-
plug. On the other hand, if both surface stresses exceed the yield
stress and have the same sign, Y± lie outside the gap and the layer
is fully yielded. If js1j < B and js2j > B, the plug is rigidly attached to
the lower boundary, and moves with speed U1 (in that case,
Y� < Y1 < Y+ < Y2). Conversely if js1j > B and js2j < B, a rigid plug is at-
tached to the upper boundary and travels with speed U2 (corre-
sponding to Y1 < Y� < Y2 < Y+). The only other possibility is the
uninteresting case jsjj < B,j = 1 and 2, for which the fluid layer must
be unyielded and the surfaces unable to move relative to each
other.

Based upon the surface shear stresses or the positions of the
yield surfaces, we can therefore classify four different types of flow
field:

� A: Central pseudo-plug; js1j, js2j > B and sgn(s1) = �sgn(s2).
� B: Lower plug; js1j < B.
� C: Fully yielded zone; js1j, js2j > B and sgn(s1) = sgn(s2).
� D: Upper plug; js2j < B.

As detailed in Appendix B, the governing Eqs. (10) and (14) for
the Herschel–Bulkley model can be simplified in regions B and D,
with analytical forms found for the stresses and pressure gradi-
ent. Similar reductions are possible in region C if n = 1. However,
region A is more complicated, and the stresses and pressure must
be found from solving the algebraic problem in (10), (14) and
(16) (see also [27,4]). For the problems of interest, it is not
known a priori where each type of flow field is attained (or if
they appear at all); the relations in (10) and (14) encompass
all four possibilities without having to explicitly identify the flow
structure.

2.3. Force on surfaces

In the examples to follow, we also need to compute the forces
on the moving surfaces in order to determine their dynamic evolu-
tion. To leading order in aspect ratio, the dimensional force per unit
width acting on the lower surface due to the fluid is
L2T

H

Z
D

H

L
ðs1 þ pY1xÞx̂� pŷ

� �
dx: ð19Þ

Note that the force along the slot is much less than transverse to it.
Also, because the fluid has no inertia, the force on the upper surface
is equal and opposite to that on the lower surface.

3. Viscoplastic journal bearings

3.1. Bearings with prescribed motion

The journal bearing consists of an inner cylinder of dimensional
radius a that is able to translate and rotate, contained within a sta-
tionary outer cylinder of dimensional radius b. We define the char-
acteristic length scales, H and L, by H ¼ b� a and L ¼ a. In the
laboratory frame, the dimensional position of the inner cylinder
centre is

ðb� aÞeðcos H;� sin HÞ; ð20Þ

where the dimensionless separation of the two centres is e(t). The
line of centres makes a clockwise-increasing angle H(t) with the
horizontal (see the sketch in Fig. 2), and the inner cylinder’s (dimen-
sionless) rotation rate is X(t). We define x and y in terms of a clock-
wise polar (r,h)-coordinate system centred on the inner cylinder
and orientated by the line of centres (with h = 0 aligned with the
narrowest part of the gap):

y ¼ r � a
b� a

; x ¼ h: ð21Þ

The locations of the cylinder surfaces are therefore

Y1 ¼ 0 and Y2 ¼ 1� e cos h: ð22Þ

and the fluid velocities are, to leading order,

U1 ¼ X� _H; V1 ¼ 0; ð23Þ
U2 ¼ � _H; V2 ¼ � _e cos h� e _H sin h: ð24Þ

Hence

h ¼ 1� e cos h; U ¼ �X; q ¼ 1
2

hðX� 2 _HÞ � _e sin h: ð25Þ

Finally, the bearing is periodic in h, so P = 0 in (16).
A sample journal bearing solution, for prescribed geometry and

cylinder velocity and rotation is shown in Fig. 4. This solution con-
tains a fully yielded gap over two angular ranges (region C), two
unconnected central pseudo-plugs (A), and genuine rigid zones
attached to either cylinder (B and D). These flow morphologies be-
come spliced together to create the overall flow pattern.

3.2. Small motions; large yield stress

For either large yield stress, B	 1, or small motions of the inner
cylinder, ð _e; _H;X; q;QÞ 
 U � 1, it becomes possible to calculate
the flow field largely analytically. In these limits, the arrangement
of alternating plugs, pseudo-plugs and yielded zones converges to
certain patterns, as illustrated in Figs. 5 and 6. Notably, for the first
example, sj 
 B over pairs of B,C and D regions, but there are inter-
vening A regions in which the surface stresses have opposite sign
with jsjj 
 B. In the second example, sj 
 B, throughout the gap
and there are no pseudo-plugs.

Referring to the analysis of the different regions in Appendix B,
we see that in the limit of large B or small U, the pressure gradient is

ph ¼
s2 � s1

h

 2Bs2

h
ð26Þ

over region A and smaller elsewhere (except for the slender connec-
tion zones in regions B and D bordering region A). Thus, provided
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the flow pattern contains A regions as in Fig. 5, the periodicity con-
dition,

R 2p
0 phdh ¼ 0, is dominated by them and is equivalent, to

leading order, toZ
AB

dh
h
¼
Z

AD

dh
h
; ð27Þ

where AB and AD denote the two A regions that exist within the do-

main, which cover the angular intervals, hð1ÞAB ; h
ð2Þ
AB

� �
and hð1ÞAD ; h

ð2Þ
AD

� �
,

and are bordered by the B and D regions, respectively.1 That is,

tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
1� e

r
tan

h
2

" #hð2Þ
AB

hð1Þ
AB

¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffi
1þ e
1� e

r
tan

h
2

" #hð2Þ
AD

hð1Þ
AD

: ð28Þ
1 The connection zones within regions B and D, over which one of the surface
stresses transitions from B to �B, or vice versa, and ph drops sharply from its value in
(26), are too slender to contribute to the integral of ph to leading order.
Importantly, the borders of the A regions, hðkÞAB and hðkÞAD for k = 1 and 2,
turn out to depend only on the velocity and rotation rate of the in-
ner cylinder and Q (see (B.24)). Thus, (28) implicitly determines Q
independently of the yield stress, and we find that

Q 
 1
2

X� _H
� �

ð1� e2Þ: ð29Þ

The most straightforward way to verify this limiting flux is to insert
(29) into the relations specifying the edges of the A region (see Appen-

dix B), solve them for hðkÞAB and hðkÞAD, and then check that (28) is satisfied.
For later use we also quote the leading-order forms of the

integrals,

fe ¼
Z 2p

0
ph sin h dh 
 2Bs

e
log

h hð2ÞAB

� �
h hð1ÞAD

� �
h hð1ÞAB

� �
h hð2ÞAD

� �
2
4

3
5; ð30Þ

fv ¼ �
Z 2p

0
ph cos h dh 
 2Bs

e
hð1ÞAD � hð2ÞAD þ hð2ÞAB � hð1ÞAB

h i
; ð31Þ
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and
Tf ¼
Z 2p

0
s1 dh 
 2Bs pþ hð1ÞAB � hð2ÞAB

h i
; ð32Þ
where s is the sign of s1 over the AD region. These limits follow from
(26) and the leading-order forms of s1 in the various regions (over
most of the AD, B, C and D, we have s1 
 Bs, whereas s1 
 � Bs over
the AB region).

These limits of the flux, forces and torque are rather different
if the flow pattern does not contain any A regions, as in the sec-
ond example of Fig. 6. In fact, for this case, Q, jsjj � B, Y± and ph

all become independent of B. This feature arises because the sur-
face stresses become single-signed and B then cancels out from
(10) and (14) (as can be shown with a little algebra; see Appen-
dix B). Although the formulae for the pressure gradient simplify
in this instance, the entire gap contributes to (16) and the flux
constraint reduces to a relatively opaque implicit equation for
Q (cf. [13]), preventing us from offering any concise limiting
solutions.
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3.3. Dynamic evolution

The leading-order force on the inner cylinder, which acts in
the y-direction, is expressible in terms of the two unit vectors, ê
and v̂, directed along the line of centres (from the outer’s centre
to the inner’s), and perpendicular to that line (in the counter-
clockwise sense), since ŷ � �ê cos h� v̂ sin h. Per unit width, the
force is

qma2U

ðb� aÞ2
ðfeêþ fvv̂Þ � �

qma2U

ðb� aÞ2
Z 2p

0
pðê cos hþ v̂ sin hÞdh: ð33Þ

Furthermore, the clockwise torque per unit width acting on the in-
ner cylinder, about its centre, is

qma2U

ðb� aÞ Tf �
qma2U

ðb� aÞ

Z 2p

0
s1 dh: ð34Þ

The equations of motion of the inner cylinder, subject to an
external load, �ðqma2UÞ=ðb� aÞ2, acting vertically downwards,
and a clockwise torque, qma2UT=ðb� aÞ, each per unit length, are
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d plug attached to the outer cylinder has constant radius (see Appendix B).
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2 The same considerations apply to the more classical problem of the sedimenta-
on of a smooth object towards a plane surface through a viscous fluid (e.g. [19]). That
, the Newtonian solution predicts O(1) shear rates within the narrowest parts of the
tervening gap, where the lubrication pressure is highest, but increasingly low shear
tes elsewhere. Thus sedimentation in a yield-stress fluid is controlled by yield
resses outside the narrowest part of the gap. Such a situation defies straightforward

nalysis in general geometries (cf. [17]) but remains analytically accessible in the
eometry of the journal bearing.
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therefore

Mð€e� e _H2Þ ¼ fe þ sin H;

Mðe €Hþ 2 _e _HÞ ¼ fv þ cos H;

I _X ¼ Tf þ T;

ð35Þ

where

M ¼ Re
mðb� aÞ2

qa4 ; I ¼ I
qa4 Re; ð36Þ

q is the fluid density and m and I are the inertial mass and moment
of inertia per unit width of the inner cylinder, respectively
ðRe ¼ Uðb� aÞ=mÞ. Note that we have exploited the speed scale U ,
which is unspecified if the motion evolves dynamically, to scale
the dimensionless imposed load to unity. Lastly, in lubrication the-
ory, the reduced Reynolds number HRe=L is assumed small. Thus,
in practice, if all the mass of the inner cylinder is contained within
the bearing (implying m = pa2qs and I = ma2/2, with qs the solid
density) then it is likely that M� 1. On the other hand, I may be
order one (for moderate density ratios).

If the inertia of the inner cylinder is unimportant (the case usu-
ally considered for Newtonian journal bearings, see [1]), then
ðM; IÞ ! 0 and the equations of motion (35) become implicit equa-
tions for the cylinder’s radial and angular speeds, _e and _H, and its
rotation rate, X. These implicit equations can be solved by extend-
ing the Newton iteration algorithm described in Appendix A, and
the ODEs then integrated in time. Sample solutions are shown in
Fig. 7. The solution shown in detail corresponds to a periodic orbit
in which the inner cylinder circulates inside the outer one, with
plug zones adjacent to the walls expanding and shrinking as the in-
ner cylinder shifts off-centre. Note that the dynamical system is
non-dissipative in the inertia-less limit and the periodic orbit exe-
cuted depends on the initial condition, just as for the Newtonian
(full) journal bearing [1]. With rotational inertia ðI > 0Þ, the system
becomes dissipative, and the solution converges to the fixed point
with (e,H,X) = (es,p,Xs), where the radial position, es, and rotation
rate, Xs, depend upon the yield stress. This fixed point is the ana-
logue of the classical Sommerfeld solution, and is also shown in
Fig. 7. Sommerfeld-type solutions without pseudo-plugs have been
constructed previously for Bingham fluids [3,1,13].

3.4. Pure sedimentation

When there is no imposed torque (T = 0) and the inner cylinder
begins without rotation (X(0) = 0) from a position that is shifted
off-centre in the direction of the imposed load (H(0) = p/2), then
that object ‘‘sediments’’ (a terminology more suitable when the
load is gravity) without adjusting its angle or starting to rotate.
The only nontrivial equation of motion is
M€e ¼ fe þ 1: ð37Þ

Moreover, the symmetry of the problem demands that
s1 = �s2 = �hph/2, Y+ = h � Y�, U = Q = 0 and q ¼ � _e sin h, implying,
from (14), that the stress s2 satisfies the algebraic equation,

h2I1ðs2Þ
2s2

2

þ _e sin h ¼ 0: ð38Þ

The solution must then be fed into the integral fe (cf. (33)) in order
that (37) can be integrated.

Sample numerical solutions for sedimentation are shown in
Fig. 8. A key feature of these solutions is that the inner cylinder
only sediments if the yield stress is sufficiently small: B < 1

8. More-
over, even if B < 1

8, the cylinder stops sedimenting and reaches an
equilibrium position, e = e⁄(B) < 1, without making contact with
the outer cylinder.

To understand this dynamics, we first explore the limit,
B ? 0 (i.e. a power-law fluid), for which I1(s2) ? njs2j2+1/n/
(2n + 1)sgn(s2). The resulting stress distribution indicates that
e ? 1 � O(t�2) for t ?1, and as the inner cylinder approaches con-
tact with the outer, the pressure over the narrowest part of the
intervening gap dominates the resisting force. Hence

s2 ¼ �
2ð2nþ 1Þ

nh2

� �n

j _e sin hjnsgnð _e sin hÞ


 �2nð2þ 1=nÞnd�3n j _eUj
n sgnðUÞ

ð1þU2=2Þ2n ;

ð39Þ

for e = 1 � d2, h = dU and h 
 d2(1 + U2/2) with U = O(1). The surface
shear rate in the gap, juyj = js2j1/n, is therefore of order _ed�3 ¼ Oð1Þ
for t	 1. More importantly, the stresses and shear rate decline as
one progresses outside the gap (ı.e. for jUj 	 1): s2 ? jUj�3n and
juyj 
 jUj�3. These observations suggest that, if the yield stress is
reintroduced into the problem, the narrowest part of the gap is
likely to remain yielded if so to begin with, but yield stresses will
eventually dominate throughout the bulk of the gap elsewhere,
thereby bringing the inner cylinder to rest before it makes contact.2

To proceed a little further, we consider the limit _e� 1 in (38),
which indicates that

1	 2 _es2
2

h2 sin h ¼ �I1ðs2Þ 
 �
nB

nþ 1
ðjs2j � BÞ1þ1=nsgnðs2Þ: ð40Þ
ti
is
in
ra
st
a
g
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Hence, to leading order (given that s2 ¼ 1
2 hph)

ph 
 �
2B
h
þ 2

h
2 _eBðnþ 1Þ

nh2 j sin hj
� �n=ðnþ1Þ

( )
sgnðsin hÞ: ð41Þ

Finally, ignoring the inertial term in (37) (which is small in this lim-
it), we arrive at the force balance

2 _eB
nþ 1

n
4
Z p

0

ðsin hÞð2nþ1Þ=ðnþ1Þ dh

ð1� e cos hÞð3nþ1Þ=ðnþ1Þ

" #ðnþ1Þ=n


 1� 4B
e

log
1þ e
1� e

� �� �ðnþ1Þ=n

: ð42Þ

The inner cylinder therefore comes to rest as e ? e⁄ � O(t�1/n),
where

1 ¼ 4B
e�

log
1þ e�
1� e�

� �
: ð43Þ

The predictions in (42) and (43) are also shown in Fig. 8. Note
that the final O(t�1/n) approach to rest is relatively slow and coin-
cides with the convergence to the final shapes encountered for the
slumps of free surface flows [28], and is quite different from the fi-
nite stopping time found for confined flows with fixed boundaries
(e.g. [29]).

3.5. General stopping conditions

The relation in (43) provides the radial location along the mid-
line of the bearing (H = p/2) at which the inner cylinder is brought
to rest if B < 1

8. We may arrive at this condition more directly, and
also generalize it to arbitrary positions and rotations, by consider-
ing the limits of the forces implied by (30)–(32), in tandem with
the equations of motion (35) with the inertial terms neglected.
For simplicity, we describe the analysis explicitly assuming that
the cylinder is not able to rotate at all, so that X = 0. In this case,
the B, C and D regions all shrink to zero width (indicating that there
are sharp jumps in the surface shear stresses, s1 and s2, across the
borders of the two A regions; cf. Fig. 9(c)) and hð2ÞAD ! hð1ÞAB and
hð1ÞAD ! hð2ÞAB þ 2p, after arranging the domain so that AD always lies
to the left of AB. Thus
(a)

B=0.12

0.11
0.1

Fig. 9. (a) Stopping conditions for X = 0; shown are polar plots of the critical curves, [e⁄
same polar plane of inertialess initial-value problems with [e(0),H(0)] = (0.1k,0), for B =
initial-value computation with e(0) = 0.2 are shown in the other two panels: (b) shows th
100, 1000 and 4000 (the dashed lines denote ±B).
4B
e

ln
h hð1ÞAB

� �
h hð2ÞAB

� �
2
4

3
5 
 sin H;

4B
e

p� hð2ÞAB þ hð1ÞAB

h i

 cos H:

ð44Þ

If we set _H ¼ ! _e, and recall from (29) that Q ! �ð1� e2Þ _H in
this limit, we may determine the critical values of ! and B for
which the inner cylinder is brought to rest at the position
(e,H) = (e⁄,H⁄). The critical value of � is given only implicitly by
(44), and it is more expedient to compute H⁄ and B explicitly from
(44), given values for e⁄ and � (and first determining hðkÞAB from
(B.24)); see Fig. 9. This figure also reports the results of some ini-
tial-value computations that illustrate the convergence to the stop-
ping condition for B = 0.1. For H⁄ = p/2, � = 0 and (44) reduce to
(43); conversely, for H⁄? 0, � ?1 and we discover B = e⁄/
(4p � 8cos�1e⁄). For B < 1/4p, the curves representing the stopping
condition intersect the outer cylinder at a given angle, H, suggest-
ing that the inner cylinder can either sediment onto the outer wall
or be brought to rest inside the bearing, depending on the path
taken from the initial condition.

If the inner cylinder also rotates under an imposed torque, then
the stopping conditions must necessarily change. If the torque sets
a given rotation rate, then the fluid must yield to accommodate the
imposed shear; the inner cylinder then always sediments onto the
outer cylinder unless the rotation is sufficient to suspend it indef-
initely, as in the sample solutions shown in Fig. 7. On the other
hand, if the torque is fixed, then it is possible that the inner cylin-
der simultaneously comes to rest and stops rotating; the corre-
sponding stopping criterion can be determined much as above,
though with more effort, assuming that the dynamics is controlled
by the A regions present in the flow pattern. Awkwardly, those re-
gions actually disappear if the torque and rotation rate become too
large, calling for a different asymptotic description. We avoid
becoming overly distracted by such technical detail, and now move
on to our second lubrication problem.
4. Viscoplastic sliders, blades and washboards

We next consider an inclined plate moving over the surface of a
viscoplastic layer, as sketched in Fig. 2c. The plate is held at a
constant angle a to the horizontal and moves with a fixed horizon-
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tal speed U . We will work in a frame that moves horizontally with
the plate, for which the lowest point (the ‘tip’) lies at x = 0 and
y = Y(t); the plate moves vertically with speed _Y . On selecting
H=L ¼ tan a in the non-dimensionalization of Section 2, the sur-
faces confining the fluid gap are given by

Y1 ¼ 0; Y2 ¼ Y þ x; ð45Þ

and the velocities there are

U1

V1

� �
¼
�1
0

� �
;

U2

V2

� �
¼

0
_Y

� �
: ð46Þ

Hence, in the notation of Section 2

h ¼ Y þ x; U ¼ 1; q ¼ �1
2

hþ _Yx: ð47Þ

The fluid makes contact with the plate over the section
0 6 x 6 L, and we impose p = 0 at the two ends, implying P = 0
in (16). The dimensionless lift force on the plate due to the fluid
is

f ðY ; _Y; L; BÞ ¼
Z L

0
p dx; ð48Þ

written to emphasize the parametric dependence on the yield
stress, which is one of our main objectives below. Hereon, we also
focus on the Bingham fluid (n = 1), for which additional analytical
headway is possible, expediting the exploration.

4.1. Slider bearing and blade coating solutions

The configuration summarized above applies to the classical
lubrication problems of the slider bearing and blade coating
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[1,23]. For the slider bearing, the length L and the position of the
upper surface Y are fixed, and one requires the forces on the plate.
In blade coating, L and Y are again prescribed, but the flux, and
therefore the depth of the fluid layer left behind are of primary
interest. In either case, we may set L = 1, equivalent to a choice
of horizontal lengthscale L.

Fig. 10 shows how the lift force on a slider bearing varies with
the size of the gap and the yield stress of the fluid. In the Newto-
nian case, the lift force is given by the standard expression

f0ðY ; L; 0Þ ¼ 12
1
2

log
Y þ L

Y

� �
� L

2Y þ L

� �
; ð49Þ

In the limit of large B, as shown in Appendix C (see also [1]), the
force is instead given by

f0ðY; L;1Þ ¼
12 1

2 log YþL
Y

	 

� L

2YþL

h i
Y P L

1
9

YþL
Y

	 
2 � 2 log YþL
Y

	 

þ 56 log 2� 40

h i
Y < L:

8><
>:

ð50Þ

As seen in Fig. 10, f0(Y,L; B) P f0(Y,L; 0) for given Y. Note that f0(Y,L;
B) = f0(Y,L; 1) for finite yield stress if

B P BcðY; LÞ ¼
ð2Y þ LÞ

9Y3 ðL� YÞþ: ð51Þ

The critical value, Bc(Y,L), increases monotonically from 0 to1 as Y
decreases from L to 0, and arises because of the disappearance of
any pseudo-plugs (A regions) within the flow (see Appendix C).
Note that if Y P L the Newtonian expression (49) holds regardless
of the value of B, since the fluid is always fully yielded in that case.
In general, however, for 0 < B < Bc, there is no analytical expression
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for f0(Y,L; B), and the lift force must be computed numerically, using
a method like that in Appendix A.

Fig. 11 shows sample solutions for the steady slider bearings,
for different values of the yield stress. Provided Y < L (as in these
cases), the Newtonian solution possesses curves of zero shear
stress which, when a small yield stress is added, broaden into
pseudo-plugs (i.e region A; the overall arrangement of the flow pat-
tern is A–B–C–D–A, see the second panel of Fig. 11). As the yield
stress is increased, these pseudo-plugs thicken and turn into real
plugs by becoming attached to the upper surface (region D) near
the leading edge (third panel of Fig. 11), and to the lower surface
(region B) near the trailing edge. The A region disappears entirely
once the plugs are both fully attached to the surfaces for
B > Bc(Y,L); the flow structure then becomes independent of the
yield stress and the sole effect of B is to shift the surface shear
stresses (final panel of Fig. 11; the flow arrangement is now B–
C–D). The yield surface within region D is conspicuously flat, a fact
which is easily verified from the details in Appendix B, where with
q ¼ � 1

2 h and U = 1, the stress s1, pressure gradient px and yield sur-
face Y� are all seen to be independent of x ((B.14)–(B.17)).

The horizontal drag force on the plate can also be calculated,
and an analytical expression found for the case when there is no
A region (see [1]). The force is dominated by the shear stresses
for B	 1 (see (19)), and therefore increases linearly with B in this
limit, whereas the vertical lift force becomes independent of B. On
the other hand, the shear stress cannot continue to increase with-
out bound in the lubrication analysis without violating the implicit
assumption that this stress is smaller than the pressure by a factor
of order of the aspect ratio; a different analysis is called for at such
high yield stress.

Note that solutions equivalent to the final example of Fig. 11
were presented by Milne [3], but the flow pattern appears to have
been assumed to take the relevant form, and the possibility that
pseudo-plugs may exist for B < Bc(Y,L) is not mentioned. Later work
[1,27,4,30] notes the possibility, but does not provide any solutions
with pseudo-plugs; thus, Figs. 10 and 11 provide a more complete
summary of viscoplastic slider bearings.

For the blade coater, the steady flux Q = Q0(Y,L; B), determines
the depth, gT, of the layer of fluid emplaced downstream of the
plate: by mass conservation, gT = �Q0. The classical Newtonian
solution [31,23] gives the flux as

Q 0ðY; L; 0Þ ¼ � Y þ L
2Y þ L

Y: ð52Þ

Thus, gT varies from 1
2 Y to Y as the gap becomes narrower. For finite

yield stress, it turns out that Q0(Y,L; B) = Q0(Y,L; 0) provided the
plugs are fully attached (B P Bc(Y,L); see Appendix C). When there
is an A region, for 0 < B < Bc(Y,L), the flux is slightly enhanced,
Q0(Y,L; B)/Q0(Y,L; 0) > 1, as shown in Fig. 10c.

4.2. Washboarding dynamics

For the washboard problem, the vertical position of the plate is
not fixed, but adjusts in response to the downward load imposed
on the plate and the fluid lift force. This demands that the wetted
length, L(t), also vary as fluid is dredged up from the incoming
layer and pushed out upstream of the plate. Simultaneously, the
fluid left behind becomes of variable depth, allowing for the pos-
sibility of a downstream flow adjustment. In principle, the full
solution of the problem therefore requires us to consider the
free-surface flows to either side of the plate, and match both to
the flow underneath the plate. Unfortunately, for x < 0 and
x > L(t), the formulation of Section 2 no longer applies because
we must now impose stress conditions at the upper surface,
and, in principle, include surface tension and gravity. To simplify
the situation, we neglect those effects, in which case lubrication
theory predicts that the pressure and shear stress are both zero
throughout the upstream and downstream layers owing to the
stress-free surface conditions. Thus, as for the slider and blade
solutions, the pressure still vanishes at the plate’s edges and P = 0.

Upstream of the plate, the entire fluid layer is of uniform depth,
H, and moves with the velocity of the lower boundary, �U (ie. it is
stationary in the frame of the fluid bed). These scales can be used
for the non-dimensionalization of the problem, implying that the
upstream solution has unit depth and speed u = �1. Underneath
the plate, on the other hand, the flow takes a very different form,
satisfying no slip on both surfaces, and the fluid depth at the lead-
ing edge, h(L, t) = Y + L, is not necessarily equal to unity. With a
reintroduction of gravity and surface tension, free surface gradients
drive flow that smoothes out any discontinuities, but because we
neglect that physics, we must accept a jump in depth across the
leading (and also trailing) edge of the plate. The effect of gravity
in smoothing out this jump is discussed in Appendix D.

To connect the uniform upstream layer with the flow under the
plate we apply a jump condition to conserve mass: for x > L(t),
there is a dimensional flux �HU , or a dimensionless flux of �1.
On the other hand, for x ? L(t) from the left, the (dimensionless)
flux is Q � L _Y . Any difference in these two fluxes forces the wetted
length to change and the fluid ‘‘wedge’’ underneath the plate to
grow or shrink. The transport associated with the motion of the
leading edge is ½hðL; tÞ � 1� _L, and so mass conservation demands
½hðL; tÞ � 1� _L ¼ Q � _YLþ 1. That is,

ðY þ L� 1Þ _L ¼ Q þ 1� _YL: ð53Þ

Behind the plate, the flow dynamics beneath that obstruction
dictates the outflowing layer depth. Again, in the absence of sur-
face tension and gravity, the free surface depth, g(x,t), need not
be the same as the height of the plate’s tip at the trailing edge,
but is determined by mass conservation: g(0,t) � gT(t) = �Q(t),
where gT is the free surface depth just downstream of the trailing
edge. In the moving frame of the plate, the free surface is simply
advected downstream according to

gt � gx ¼ 0; gð0; tÞ ¼ gTðtÞ; ð54Þ

with solution

gðx; tÞ ¼ �Qðt þ xÞ: ð55Þ

If the elevation of the plate is fixed, we recover the blade-coating
formula outlined earlier.

Finally, we write the equation of motion for the vertical position
of the paddle:

M€Y ¼ �W þ f ; f ðY ; _Y; LÞ ¼
Z L

0
p dx ð56Þ

(suppressing the parameterical dependence on B). In this dimen-
sionless equation, the ‘load’ W corresponds to a dimensional
weight, WL2T =H, and M corresponds to a dimensional inertial
mass, ML4T =U2H2 (if the weight is g times the inertial mass, then
W ¼M ðgL=U2ÞðL=HÞ).

To summarize: given current values of Y; _Y and L, the algebraic
Eqs. (10), (14) and (16) can be solved to determine the distribution
of shear stresses and pressure gradient px beneath the plate, as well
as the flux Q. This determines the lift force in (56), and completes
the right-hand side of (53). That third-order system can then be
integrated forwards in time. Our goal is to find planing states,
where the plate is dragged steadily over the viscoplastic layer,
and then explore whether these states are stable, or suffer an
instability wherein the plate oscillates up and down, imprinting a
washboard pattern on the surface left behind.

Note that a key simplification in the prescription is afforded
when the flow pattern does not contain any pseudo-plugs (A re-
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gions). In this situation, and as for the steady problems considered
in Section 4.1, the formulae simplify sufficiently that the flux, Q,
and lift force, f ðY ; _Y; LÞ, can be computed analytically. The details
of this computation are outlined in Appendix C; importantly, both
the force and flux become independent of the yield stress B.

4.3. Steady planing

The washboard Eqs. (53)–(56) admit a steady planing solution
in which the vertical position Y and the wetted length L are tuned
so that the lift force f balances the prescribed load W, and the flux
beneath the trailing edge Q matches the influx from upstream, �1.
This exercise constitutes a nonlinear algebraic problem for the two
unknowns, L and Y. In practice, however, it is more expedient to
determine the steady state load, f0(Y; B) and wetted length, L0(Y;
B), that are required for a given plate position Y.

Fig. 12 illustrates how such steady planing states depend upon
the yield stress of the fluid, and Fig. 13 presents sample flow pat-
terns. The results are qualitatively similar to those for the slider
bearing or blade coater, the main difference being the determina-
tion of L from the flux condition, Q = �1. In the flow patterns of
Fig. 13, the first case is fully yielded (region C alone), whereas
the second example has pseudo-plugs at the leading and trailing
edges (the arrangement is A-B-C-D-A); in the third example, the
right-hand plug has attached to the plate and become truly rigid
(arrangement A-B-C-D), and both plugs are attached to the two
surfaces in the fourth example (arrangement B-C-D).

As before, any pseudo-plugs disappear when the yield stress ex-
ceeds the critical value in (51) (although L is not yet known), and
the flux Q thereafter becomes equal to the Newtonian value in
(52). In that case, L0(Y; B) = L0(Y; 0), with flux balance demanding
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L0ðY ; 0Þ ¼ ð2� YÞY
Y � 1

: ð57Þ

The steady planing depth must therefore lie over the range
1 6 Y 6 2. With this wetted length, the critical yield stress (51) re-
duces to

BcðYÞ ¼
ð3� 2YÞþ
9ðY � 1Þ2

: ð58Þ

For B P Bc, the steady load required for the adopted Y is given by
(50). If Y P 3/2 (equivalently, L0(Y;0) 6 Y or f0 6 6log2 � 4), the
steady state is fully yielded regardless of the value of B and the load
reduces to (49).

As seen in Fig. 12, as the yield stress is increased for a given
plate height, the steady state load varies smoothly between the
Newtonian value, f0(Y; 0), and the large-B limit, f0(Y; 1). At the
same time, the wetted length first drops below L(Y; 0) before
returning to that same value once the pseudo-plugs disappear.

4.4. Washboard instability

We now explore the stability of the planing states described
above by solving the equations of motion as an initial-value prob-
lem. Some examples are shown in Figs. 14 and 15; in short, the
steady planing state is stable when the imposed weight W is suffi-
ciently large, but becomes unstable to vertical oscillations when W

falls below a threshold value that depends upon the inertia M and
the rheological properties.

When the steady planing state is unstable, the vertical oscilla-
tions of the plate amplify until a periodic oscillation is established.
The amplitude of this oscillation increases as the load is reduced
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(moving further from the stability threshold), and for sufficiently
small weight the oscillations become strong enough that the plate
loses contact with the fluid for part of the cycle (that is, the wetted
length L vanishes over a fraction of the period). After taking off, the
plate follows a ballistic trajectory, making contact with the fluid
again when Y falls back to the undisturbed surface depth. Note
how the plate’s take off and landing deposit a cliff in the underlying
fluid layer (an artifact of the lubrication approximation and our ne-
glect of surface tension and gravity). This is because the flux Q at
those instances is not equal to the undisturbed value �1; indeed
in the case that there are no pseudo-plugs, one can show that
gT ¼ 1

2 Y at take-off and landing (when L = 0; see Appendix C and
(C.3)).

Fig. 16a shows how the amplitude of the periodic states varies
with the yield stress. As B is increased from zero, the threshold
weight for instability is slightly reduced, but becomes independent
of B once the yield stress exceeds a critical value corresponding to
the disappearance of pseudo-plugs from the steady planing state.
The amplitude of the oscillations continues to depend on B above
this critical value, however, owing to the generation of such A re-
gions during the unsteady oscillations. At sufficiently large B, the
pseudo-plugs do not occur even during the oscillations, and the
plate dynamics then becomes completely independent of B.

When there are no pseudo-plugs, an analytical expression is
available for f ðY ; _Y; LÞ (see (C.4)–(C.6)). In such situations, it is
straightforward to explore the linear stability; the condition for
instability may be expressed as

W <W�ðM;1Þ; ð59Þ

with W�ðM;1Þ shown in Fig. 16b. This condition also applies for
any sufficiently large B > Bc(Y) (Y being the steady state value corre-
sponding to W�). A similar calculation for the Newtonian case indi-
cates that instability occurs for W <W�ðM; 0Þ, as also shown in
Fig. 16b (note that for W� < 6 log 2� 4 
 0:159;BcðYÞ ¼ 0 so the
two conditions are equal). For intermediate values of B the critical
W�ðM; BÞ must be determined numerically, and additional calcula-
tions suggest a monotonic variation between W�ðM; 0Þ and
W�ðM;1Þ.
4.5. Shape of the imprinted pattern

The washboarding theory above ignores the effects of gravity
and surface tension on the fluid layer, and therefore places jumps
in the height of the downstream layer when the plate lands and
takes off. This free surface pattern becomes ‘frozen’ into the fluid,
even if there is no yield stress. More realistically, gravity and sur-
face tension smooth out the surface over the regions where the
shear stresses generated by the surface slope and curvature exceed
the yield stress (in the experimental images shown in Fig. 1, the
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yield stress is sufficiently strong that the deformed fluid surface re-
mains relatively steep near the edges of the splash pattern).

To illustrate this, we reintroduce gravity into the problem,
taking its dimensionless size to be G ¼ qgH2=TL, where g is the
gravitational acceleration. The evolution of the free surface g is
then given (for the Bingham fluid) by

gt � gþ 1
6

f2ð3g� fÞGgx

� �
x
¼ 0; f ¼ g� B

Gjgxj

� �
þ
; ð60Þ

with

gþ 1
6

f2ð3g� fÞGgx

� �����
x¼0
¼ �QðtÞ; gx ! 0 as x! �1; ð61Þ

where f is analogous to Y� and represents the lower limit of a sur-
face pseudo-plug [14,12,32,26].

To solve (60), we use finite differences on a uniform grid to eval-
uate the spatial derivatives, then integrate the resulting ordinary
differential equations in time using a standard stiff integrator with
a variable time step (MATLAB’s ODE15s). However, special care is
required in order to avoid unwanted numerical diffusion associ-
ated with the advection term, especially to compute the long-time
evolution towards the final washboard pattern. We minimize such
diffusion by actually solving (60) in the frame of the fluid layer.
Having moved into that frame and defined the new spatial coordi-
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nate, n = x + t, the flux �Q(t) is prescribed at the moving right-hand
edge of the domain, n = t. To avoid spurious oscillations due to fi-
nite resolution, occurring as grid points move onto the computa-
tional grid in n < t, we replace the flux condition by a distributed
source term, narrowly confined around n = t (verifying that the
width of the source does not affect the solution).

Fig. 17a shows a sample free surface pattern evolving from the
forcing imposed by the periodic oscillation shown earlier in Fig. 15.
Under gravity, the forcing pattern �Q(x + t) collapses over the re-
gions where gjgxj > B=G, invading the surrounding layers where
fluid was initially deposited below the yield stress. The fluid subse-
quently brakes to rest once surface slopes become sufficiently shal-
low. As t ?1, the slumped regions are characterized by f ? 0
(corresponding to an approach of the shear stress to the yield
stress), indicating that the smoothed-out regions of the eventual
pattern converge to profiles of the form,

gðnÞ � gðx; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
� �

2B
G
ðxþ t � n�Þ

s
; ð62Þ

where n⁄ and g⁄ = g(n⁄) denote a given point and depth within the
slumped region.

As shown in Fig. 17b, the spatial intervals occupied by the
slumped sections of the profile depend on the gravitational param-
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eter: if G is small, the profile remains largely unaltered from
�Q(x + t), but slumps over distinct, localized zones surrounding
the discontinuities that arise from the entry and take-off of the
paddle. For larger G, further sections of the fluid layer collapse,
and the slumps widen with time and merge together, smoothing
out the final shape more significantly. Although the surface is
now rendered continuous everywhere, the surface slope remains
discontinuous at the edges of the slumped sections.
5. Discussion

In this paper, we have described a general method to compute
stresses and flow fields in viscoplastic lubrication problems. The
central difficulty in such problems is that the structure of the flow
field, and the resulting relationships between pressure gradient
and fluid velocity, are generally not known a priori, but must be
determined as part of the solution. For example, the flow may con-
tain fully yielded sections, genuine plugs attached to the walls, and
floating pseudo-plugs, all of which come and go as the surfaces
change position. The current formulation avoids any need to
explicitly decompose the flow pattern into constituents of this kind
and can be solved using an efficient numerical scheme.

We applied the theory to the viscoplastic journal bearing, deriv-
ing richer families of solutions than previously documented.
Although typical bearing operating conditions may preclude any
important impact of a yield stress (B is small in our dimensionless
model), magneto-rheological fluids might present a novel applica-
tion in which controlled yield stresses do play an elemental role, as
remarked by Tichy [4]. Indeed, a recent article by Ewoldt et al. [33]
illustrates how one can manipulate the yield stress over a thin fluid
layer to control adhesion between the bounding solid surfaces.

In such applications it is important to understand the arrest of
motion by the yield stress, motivating our analysis of the sedimen-
tation of the inner cylinder within a journal bearing. In the bear-
ing’s thin geometry, lubrication theory can be exploited
throughout the fluid, allowing a good deal of analytical headway
into this problem. In more general geometries (such as sedimenta-
tion onto a planar surface), the lubrication approximation fails
away from the thinnest sections of the intervening gap, which is
where the yield stress arrests motion, precluding further analysis.

A main goal of this study was to examine the washboarding
instability on a viscoplastic fluid layer. An earlier paper [16] pre-
sented a conceptual model of the problem, designed to complement
experiments in which washboards were observed. That model was
too crude to demonstrate definitively that washboard patterns
emerge due to the linear instability of the steady planing state. Here,
we have been able to shore up the idea with a model derived from
the governing fluid equations, and, therefore, based more firmly
on the detailed fluid mechanics. The theory may also be relevant
to industrial processes such as blade coating: if the blade can deform
in response to the fluid force (such designs are common, see [25]),
the washboarding instability could be a concern.

The analysis suggests that to make the plate stable, one should
increase the dimensionless weight or decrease the dimensionless
inertia. On the other hand, the dimensional weight and inertia
are likely related to one another, and it proves more helpful to
think in terms of the velocity U , with instability occurring above
a critical speed, Uc .3 Washboarding is avoided if speeds are suffi-
ciently slow, a solution which does not cut much mustard with driv-
ers on roads. The model predictions, however, apply to a relatively
shallow layer for which the fluid is forced to flow throughout its
3 If the plate’s dimensional inertia is m, and weight mg, then our dimensionless
inertia parameter, M ¼WðH=LÞðU2=gLÞ. But Fig. 16b indicates that M must typically
be rather larger than W for instability to occur. Thus, U should be large relative to
gL ¼ gH= tan a to destabilize steady planing.
depth; when the layer is deeper, deformation is likely to be confined
close to the surface and the stability conditions may be different.

A worthwhile extension of the analysis is to consider moving
objects with different shapes. A parabolic shape is of interest for
both washboarding with a wheel and for industrial roll-coating
applications [23]. The formulation in Section 2 is not restricted to
a flat plate, but the chief difficultly in extending the analysis lies
in locating the separation point where the fluid detaches down-
stream. For the plate with its sharp edge, we can sensibly assume
that the flow separates at the lowest point; but for more general
shapes this is not the case. Additional separation conditions (see
[34,35,23]) must be applied, and surface tension likely plays a
more prominent role.

Finally, we have not considered the stability of our planing or
washboarding solutions to perturbations in the third (lateral)
dimension. Particularly when the vertical flow front at L is retreat-
ing, the flow may well become unstable to fingering, as in the prin-
ter’s instability [36]. Indeed, in the experiments reported by Hewitt
et al. [16] and illustrated in Fig. 1, the washboard patterns dug out
by the oscillating plate often featured a serrated downstream edge,
where the plate detached from the fluid; fingering just prior to
detachment offers a plausible explanation.
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Appendix A. Newton iteration for lubrication flows

To solve (10), (14) and (16), assume that we have a trial solution
for the surface stresses, �s1 and �s2, and the flux, �Q . Then small cor-
rections satisfy

Fð�s1; �s2Þ þ F1Ds1 þ F2Ds2 
 0 ðA:1Þ
Gð�s1; �s2; �QÞ þ G1Ds1 þ G2Ds2 
 DQ ðA:2Þ

and

P �
Z

D
ð�s2 � �s1Þ

dx
h


Z

D
ðDs2 � Ds1Þ

dx
h
; ðA:3Þ

where

Fðs1; s2Þ ¼
I0ðs1Þ � I0ðs2Þ

s1 � s2
� U

h
; ðA:4Þ

Gðs1; s2; �QÞ ¼ Uhðs2 þ s1Þ
2ðs2 � s1Þ

� h2½I1ðs2Þ � I1ðs1Þ�
ðs2 � s1Þ2

� �Q þ q; ðA:5Þ

Fj ¼
@F
@sj

����
s1¼�s1 ;s2¼�s2

and Gj ¼
@G
@sj

����
s1¼�s1 ;s2¼�s2

: ðA:6Þ

Thus, denoting �F ¼ Fð�s1; �s2Þ and �G ¼ Gð�s1; �s2; �QÞ,

Dsj 

ð�1Þj

J
½FkDQ � �GFk þ �FGk�; ðA:7Þ

where J = F1G2 � F2G1 and k = 3 � j. Then,

DQ
Z

D
ðF1 þ F2Þ

dx
hJ

 P �

Z
D
ð�s2 � �s1Þ

dx
h

�
Z

D
½�FðG2 þ G1Þ � �GðF1 þ F2Þ�

dx
hJ
: ðA:8Þ

In other words, after adopting a suitable discretization and quadra-
ture rule with which to evaluate the various integrals, we may
correct Q from (A.8), and then sj from (A.7). In practice, the first
guess can be provided by the Newtonian solution, whereas later
guesses can be taken from previous solutions or earlier time steps.
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Note that the iteration involves purely vector operations, and is
therefore relatively fast.

Appendix B. Flow configurations

For the Herschel–Bulkley model

CðsÞ ¼ sgnðsÞðjsj � BÞ1=n
þ ; ðB:1Þ

I0ðsÞ ¼
n

nþ 1
ðjsj � BÞ1þ1=n

þ ; ðB:2Þ

I1ðsÞ ¼ sgnðsÞ Bþ nþ 1
2nþ 1

ðjsj � BÞþ
� �

I0ðsÞ; ðB:3Þ

where (�)+ indicates max(�, 0). If

rj ¼ jsjj � B and sj ¼ sgnðsjÞ; ðB:4Þ

then the stress relationships (10) and (14) are rewritten as

U
h
¼

nðr1þ1=n
2þ � r1þ1=n

1þ Þ
ðnþ 1Þ½ðs2 � s1ÞBþ s2r2 � s1r1�

; ðB:5Þ

2ðnþ 1Þ
nh2 ðQ � qÞ ¼

n s2r2þ1=n
2þ � s1r2þ1=n

1þ

� �
ð2nþ 1Þ½ðs2 � s1ÞBþ s2r2 � s1r1�2

�
r1þ1=n

2þ þ r1þ1=n
1þ

� �
½ðs2 � s1ÞBþ s2r2 � s1r1�

: ðB:6Þ
B.1. Central pseudo-plug (region A); js1j, js2j > B, s1 = �s2

In this case there are no further simplifications of the full alge-
braic expressions in (B.5) and (B.6), except in the limit of large B or
low surface speeds. In those cases, rj� B and a number of terms
disappear from the leading-order balances, to furnish

r1

r2

� �

 2Bs1

nh2 ðnþ 1Þ Q � q� 1
2

hU
� �� �n=ðnþ1Þ

: ðB:7Þ

Also,

px 

2s2B

h
: ðB:8Þ

The positions of the yield surfaces are given to leading order by

Y� 
 Y1 þ
h

2B
r1; Yþ 
 Y2 �

h
2B

r2; ðB:9Þ

and are therefore O(Un/(n+1)B�1/(n+1)) from the walls (see Fig. 5).

B.2. Lower plug (region B); js2jP B, js1j < B

With js1j < B, r1+ = 0 and (B.5) and (B.6) then determine r2 to be

r2 ¼
ðnþ 1Þs2U2

ð2nþ 1Þ Q � qþ 1
2 hU

	 

" #n

: ðB:10Þ

Hence

s1 ¼ Bs2 þ s2r2
ð2nþ 1ÞðQ � qÞ þ 1

2 hU
ð2nþ 1Þ Q � qþ 1

2 hU
	 
 ; ðB:11Þ

px ¼
ns2r2U

ð2nþ 1Þ Q � qþ 1
2 hU

	 
 : ðB:12Þ

The yield surface at the top of the plug is given by

Yþ ¼ Y2 �
2nþ 1

n
Q � qþ 1

2 hU
U

: ðB:13Þ
The borders of this region occur for s1 ? ± Bs2, corresponding to
connections to a C or an A region, respectively. In the limit of large
B or low surface speed (when Q and q are both order U� 1), we
observe from (B.10) that r2 is O(Un) throughout most of the B
region. However, over a slender zone with a thickness of order
Un/(n+1)B�1/(n+1) adjoining the transition point to region A, this extra
stress diverges to become O(Un/(n+1)Bn/(n+1)), allowing s1 to
approach �B s2 in (B.11).

B.3. Upper plug (region D); js1jP B, js2j < B

Similarly, with js2j < B, r2+ = 0 and we find

r1 ¼ � ðnþ 1Þs1U2

ð2nþ 1Þ Q � q� 1
2 hU

	 

" #n

; ðB:14Þ

and hence

s2 ¼ Bs1 þ s1r1
ð2nþ 1ÞðQ � qÞ � 1

2 hU
ð2nþ 1Þ Q � q� 1

2 hU
	 
 ; ðB:15Þ

px ¼
ns1r1U

ð2nþ 1Þ Q � q� 1
2 hU

	 
 : ðB:16Þ

The yield surface at the bottom of the plug is given by

Y� ¼ Y1 �
2nþ 1

n
Q � q� 1

2 hU
U

: ðB:17Þ

The D region is bordered by the points where s1 = ± Bs1, correspond-
ing to transitions to C and A regions. Once again, r1 = O(Un)� B in
the large yield stress or low surface speed limit, except within a
slender zone adjacent to the transition to A, where r1 becomes
O(Un/(n+1)Bn/(n+1)).

B.4. Fully yielded (region C); js1j, js2j > B, s1 = s2

In this case B drops out from the stress relationships (B.5) and
(B.6), but for general n, no further progress can be made. For
n = 1, the equations are identical to those for the Newtonian case,
and have the solution

s1r1 ¼
U
h
þ 6

h2 ðQ � qÞ; s2r2 ¼
U
h
� 6

h2 ðQ � qÞ; ðB:18Þ

px ¼ �
12

h3 ðQ � qÞ; ðB:19Þ

(which indicate that s1 = s2 must have the sign of U).

B.5. Boundaries between regions

Given the explicit formulae for regions B and D, we may deter-
mine the borders between the four configurations:

xAB : 2Bþ
ð2nþ 1ÞðQ � qÞ þ 1

2 hU
ð2nþ 1Þ Q � qþ 1

2 hU
	 
r2 ¼ 0; ðB:20Þ

xBC : Q � qþ 1
2ð2nþ 1ÞhU ¼ 0; ðB:21Þ

xCD : Q � q� 1
2ð2nþ 1ÞhU ¼ 0; ðB:22Þ

xAD : 2Bþ
ð2nþ 1ÞðQ � qÞ � 1

2 hU
ð2nþ 1Þ Q � q� 1

2 hU
	 
r1 ¼ 0: ðB:23Þ

In the limit of large B or low surface speed, rj� B, and so the first
and last of these formulae reduce to

xAB : Q 
 q� 1
2

Uh;

xAD : Q 
 qþ 1
2

Uh:

ðB:24Þ
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B.5.1. Steady states
In the steady states of our example problems (ie. when _e; _H or _Y

are zero), the commonly appearing terms Q � q� 1
2 hU are Q � hU1

and Q � hU2. Since either the upper or lower surface is always at
rest, one of these terms is simply Q and is therefore independent
of x. In that case, one or other of regions B and D has constant pres-
sure gradient and a yield surface that is independent of x (see
Fig. 7(h) and Fig. 11).
Appendix C. The lift force on the rigid plate without pseudo-
plugs

For the washboarding problem with the Bingham fluid, we have
q ¼ _Yx� 1

2 h and h = Y + x. The boundaries between regions B, C and
D in that case are given by

xBC ¼ �
3Q þ 2Y

2� 3 _Y
; xCD ¼ �

3Q þ Y

1� 3 _Y
: ðC:1Þ

The boundaries with region A, xAB and xAD, are given respectively by
the roots of the quadratic Eqs. (B.20) and (B.23). For large B, these
positions tend to the limits

xAB 
 �
Q þ Y

1� _Y
; xAD 


Q
_Y
; ðC:2Þ

If xAB and xAD lie outside 0 < x < L, there is no region A, and the
analytical expressions for the pressure gradient in (B.12), (B.16)
and (B.19) can be integrated to determine the flux:

Q ¼ �Y½ðY þ LÞ � _YL�
2Y þ L

: ðC:3Þ

Having calculated Q, it may then be verified whether the boundaries
of region A are indeed outside of 0 < x < L. When the plate is not
moving vertically, _Y ¼ 0, and the condition for there to be no region
A (the most restrictive condition is xAB < 0) becomes (51); if L is fur-
ther prescribed by (57), we arrive at (58).

If the calculated flux confirms that there is no A region, the force
can be calculated by integrating the known pressure distribution.
The result depends upon how the remaining B, C, or D regions
are organized within the flow pattern. It turns out the only feasible
arrangements are B-C-D, D–C–B, and the fully yielded case C. For
the arrangement B-C-D (which can be shown to occur when
3L _Y < L� Y), we find

f ¼ 2ð3L _Y � Lþ YÞ
9 _Yð1� _YÞðY þ L _YÞ

� 6ð1� 2 _YÞ log
1� 3 _Y

2� 3 _Y

 !

� 4þ 2
9 _Y2

log
ð1� 3 _YÞðY þ L _YÞ

Yð1� 2 _YÞ

" #

þ 2

9ð1� _YÞ2
log

ð2� 3 _YÞðY þ L _YÞ
ð1� 2 _YÞðY þ LÞ

" #
; ðC:4Þ
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Fig. D.18. (a) Steady state free surface shapes at leading edge according to (D.1) and (D.2)
(the arrow indicates the trend with increasing B). Note the value of L, where the free surfa
transition region for the cases B = 0.5 and B = 50, with the shading denoting the pseudo
for C alone (occurring when L� Y 6 3L _Y 6 2Lþ Y),

f ¼ 12ð1� 2 _YÞ 1
2

log
Y þ L

Y

� �
� L

2Y þ L

� �
; ðC:5Þ

and for D-C-B (which arises for 3L _Y > 2Lþ Y),

f ¼ 2ð3L _Y � 2L� YÞ
9 _Yð1� _YÞðY þ L� L _YÞ

þ 6ð1� 2 _YÞ log
1� 3 _Y

2� 3 _Y

 !

þ 4� 2
9 _Y2

log
ð1� 3 _YÞðY þ L� L _YÞ
ð1� 2 _YÞðY þ LÞ

" #

� 2

9ð1� _YÞ2
log

ð2� 3 _YÞðY þ L� L _YÞ
Yð1� 2 _YÞ

" #
: ðC:6Þ

In the steady state, when _Y ¼ 0, the expressions in (C.4)–(C.6)
reduce to (50). The horizontal force on the plate can similarly be cal-
culated in these cases, integrating the expressions for the stress in
(B.11), (B.14) and (B.18).

Appendix D. Free surfaces adjacent to the washboarding plate

The planing solution in Section 4 includes jumps in surface
height at the leading and trailing edges, which in reality are
smoothed out by some combination of surface tension, gravity,
and fully two-dimensional flow. With gravity alone, the free sur-
face height g satisfies (60). Upstream of the plate, the appropriate
boundary conditions are

gðL; tÞ ¼ hðL; tÞ � YðtÞ þ LðtÞ; g! 1 as x!1: ðD:1Þ

The flux at x = L is then � gþ 1
6 f2ð3g� fÞGgx

� 

x¼L. In the washboard-

ing model of Section 4, this flux is taken equal to the upstream value
�1, and then used to determine the motion of the leading edge via
the jump condition (53). In principle, however, the flux is deter-
mined from solving (60) subject to (D.1), then matching the solu-
tion to that for the flow underneath the plate at x = L(t), leading
to a coupled system of equations describing both regions.

Nevertheless, if B=G 	 1, the free-surface region over which
gravity has an effect is small and we may rescale near the leading
edge, x ¼ Lþ XG=B, so that the time derivative in (60) drops out to
leading order. The flux is then approximately given by �1, and so

gþ 1
6

f2ð3g� fÞBgX ¼ 1; f ¼ ðg� 1=jgX jÞþ: ðD:2Þ

This relation must be solved to match to the depth, Y(t) + L(t), of the
plate at X = 0; some example solutions are shown in Fig. D.18. If B is
large, a pseudo-plug occupies the bulk of the layer (f 
 B�1/2) and
the upstream surface profile is given by

gðx; tÞ 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY þ LÞ2 � 2ðx� LÞB=G

q
;

1;

(
ðD:3Þ

for ðx� LÞ < 1
2 ½ðY þ LÞ2 � 1�G=B and ðx� LÞP 1

2 ½ðY þ LÞ2 � 1�G=B
respectively, as shown in Fig. D.18c.
(x−L)B/G

B = 0.5

5 10
(x−L)B/G
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, for the steady planing plate with Y ¼ 1:2; G ¼ 0:1, and for B = 0, 0.05, 0.1, 0.5, 5, 50
ce meets the plate, varies with B as in Fig. 12. Panels (b) and (c) show close-ups of the
-plug. The dashed line in (c) shows the square-root solution in (D.3).
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It turns out that gravity is not sufficient to enforce continuity at
the trailing edge of the plate; instead we must include surface ten-
sion or solve the full two-dimensional Stokes problem. Discussion
of related Newtonian problems is given by Tuck & Schwartz [37],
Moriarty and Terrill [38] and Quintans Carou et al. [39].
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